Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Lab Chip ; 24(2): 234-243, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050677

RESUMO

Surface charge is a critical feature of microbes that affects their interactions with other cells and their environment. Because bacterial surface charge is difficult to measure directly, it is typically indirectly inferred through zeta potential measurements. Existing tools to perform such characterization are either costly and ill-suited for non-spherical samples or rely on microfluidic techniques requiring expensive fabrication equipment or specialized facilities. Here, we report the application of commercially available PMMA microfluidic chips and open-source data analysis workflows for facile electrokinetic characterization of particles and cells after prior zeta potential measurement with a Zetasizer for calibration. Our workflows eliminate the need for microchannel fabrication, increase measurement reproducibility, and make zeta potential measurements more accessible. This novel methodology was tested with functionalized 1 µm and 2 µm polystyrene beads as well as Escherichia coli MG1655 strain. Measured zeta potentials for these samples were in agreement with literature values obtained by conventional measurement methods. Taken together, our data demonstrate the power of this workflow to broadly enable critical measurements of particle and bacterial zeta potential for numerous applications.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Reprodutibilidade dos Testes , Poliestirenos
2.
ACS Catal ; 13(12): 7987-7994, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37969469

RESUMO

α-Heteroatom functionalization is a key strategy for C-C bond formation in organic synthesis, as exemplified by the addition of a nucleophile to electrophilic functional groups, such as iminium ions; oxocarbenium ions; and their sulfur analogues, sulfenium ions. We envisioned a photoredox-enabled radical Pummerer-type reaction realized through the single-electron oxidation of a sulfide. Following this oxidative event, α-deprotonation would afford α-thio radicals that participate in radical-radical coupling reactions with azolium-bound ketyl radicals, thereby accessing a commonly proposed mechanistic intermediate of the radical-radical coupling en route to functionalized additive Pummerer products. This system provides a complementary synthetic approach to highly functionalized sulfurous products, including modification of methionine residues in peptides, and beckons further exploration in C-C bond formations previously limited in the standard two-electron process.

3.
J Am Chem Soc ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906227

RESUMO

ß-Amino acids are useful building blocks of bioactive molecules, including peptidomimetics and pharmaceutical compounds. The current limited accessibility to ß2,2-type amino acids which bear an α-quaternary center has limited their use in chemical synthesis and biological investigations. Disclosed herein is the development of a new N-heterocyclic carbene/photocatalyzed aminocarboxylation of olefins, affording ß2,2-amino esters with high regioselectivity. The generation of nitrogen-centered radicals derived from simple imides via a sequence of deprotonation and single-electron oxidation allows for the subsequent addition to geminal-disubstituted olefins regioselectively. The intermediate tertiary radicals then cross-couple with a stabilized azolium-based radical generated in situ to efficiently construct the quaternary centers. Mechanistic studies, including Stern-Volmer fluorescence quenching experiments, support the proposed catalytic cycle.

4.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693407

RESUMO

Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.

5.
Front Bioeng Biotechnol ; 11: 991784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873367

RESUMO

Lipopolysaccharide (LPS) is the unique feature that composes the outer leaflet of the Gram-negative bacterial cell envelope. Variations in LPS structures affect a number of physiological processes, including outer membrane permeability, antimicrobial resistance, recognition by the host immune system, biofilm formation, and interbacterial competition. Rapid characterization of LPS properties is crucial for studying the relationship between these LPS structural changes and bacterial physiology. However, current assessments of LPS structures require LPS extraction and purification followed by cumbersome proteomic analysis. This paper demonstrates one of the first high-throughput and non-invasive strategies to directly distinguish Escherichia coli with different LPS structures. Using a combination of three-dimensional insulator-based dielectrophoresis (3DiDEP) and cell tracking in a linear electrokinetics assay, we elucidate the effect of structural changes in E. coli LPS oligosaccharides on electrokinetic mobility and polarizability. We show that our platform is sufficiently sensitive to detect LPS structural variations at the molecular level. To correlate electrokinetic properties of LPS with the outer membrane permeability, we further examined effects of LPS structural variations on bacterial susceptibility to colistin, an antibiotic known to disrupt the outer membrane by targeting LPS. Our results suggest that microfluidic electrokinetic platforms employing 3DiDEP can be a useful tool for isolating and selecting bacteria based on their LPS glycoforms. Future iterations of these platforms could be leveraged for rapid profiling of pathogens based on their surface LPS structural identity.

6.
Annu Rev Biomed Eng ; 25: 77-100, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36854260

RESUMO

Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.


Assuntos
Eletroquimioterapia , Neoplasias , Animais , Humanos , Eletroporação , Transfecção , Neoplasias/terapia , Terapia com Eletroporação , Terapia Genética , Mamíferos
7.
J Am Chem Soc ; 145(3): 1535-1541, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625715

RESUMO

Photoinduced hydrogen atom transfer (HAT) has been developed as a powerful tool to generate synthetically valuable radical species. The direct photoexcitation of ketones has been known to promote HAT or to generate acyl radicals through Norrish-type pathways, but these modalities remain severely limited by radical side reactions. We report herein a catalyst- and transition metal-free method for the acylation of C-H bonds that leverages the unique properties of stable, isolable acyl azolium species. Specifically, acyl azolium salts are shown to undergo an intermolecular and regioselective HAT upon LED irradiation with a range of substrates bearing active C-H bonds followed by C-C bond formation to afford ketones. Experimental and computational studies support photoexcitation of the acyl azolium followed by facile intersystem crossing to access triplet diradical species that promote selective HAT and radical-radical cross-coupling.

8.
Fed Pract ; 39(9): 382-388, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36583089

RESUMO

Background: Cigarette smoking is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). Concomitant use of low-dose computed tomography (LDCT) for coronary artery calcium (CAC) scoring with lung cancer screening (LCS) has been proposed to further determine ASCVD risk and mortality. We aimed to determine the validity of LDCT in identifying CAC and its impact on statin management. Methods: We conducted a retrospective review from November 2020 to May 2021 of Military Health System (MHS) beneficiaries who received LCS with LDCT and were referred for CAC scoring with electrocardiogram-gated CT. Of the 190 participants initially identified, 170 met study eligibility. The Agatston method was used to score CAC on both scan types. Results: Participants had a mean (SD) age of 62.1 (4.6) years and were 70.6% male. CAC was seen more on ECG-gated CT compared with LDCT (88% vs 74%, P < .001). The Spearman correlation and Kendall W coefficient of concordance of CAC scores between the 2 scan types was 0.945 (P < .001) and 0.643, respectively. The κ statistic between CAC scores on the 2 different scans was 0.49 (SEκ = 0.048; 95% CI, -0.726-1.706), and the weighted κ statistic was 0.711. Bland-Altman analysis demonstrated a mean bias of 111.45 Agatston units, with limits of agreement between -268.64 and 491.54, suggesting CAC scores on electrocardiogram-gated CT were on average about 111 units higher than those on LDCT. There was a statistically significant proportion of nonstatin participants who met statin criteria based on additional CAC reporting (P < .001). Conclusions: CAC scores are highly correlated and concordant between LDCT and electrocardiogram-gated CT. Smokers undergoing annual LDCT may benefit from concomitant CAC scoring to help stratify ASCVD risk.

9.
PLoS Biol ; 20(9): e3001727, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067229

RESUMO

Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.


Assuntos
Técnicas de Transferência de Genes , Genes Bacterianos , Microfluídica , Bifidobacterium longum/genética , Eletroporação/métodos , Escherichia coli/genética , Técnicas de Transferência de Genes/instrumentação , Microfluídica/métodos , Transformação Bacteriana/genética
10.
Mol Syst Biol ; 18(3): e10785, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315586

RESUMO

Living materials combine a material scaffold, that is often porous, with engineered cells that perform sensing, computing, and biosynthetic tasks. Designing such systems is difficult because little is known regarding signaling transport parameters in the material. Here, the development of a porous microplate is presented. Hydrogel barriers between wells have a porosity of 60% and a tortuosity factor of 1.6, allowing molecular diffusion between wells. The permeability of dyes, antibiotics, inducers, and quorum signals between wells were characterized. A "sentinel" strain was constructed by introducing orthogonal sensors into the genome of Escherichia coli MG1655 for IPTG, anhydrotetracycline, L-arabinose, and four quorum signals. The strain's response to inducer diffusion through the wells was quantified up to 14 mm, and quorum and antibacterial signaling were measured over 16 h. Signaling distance is dictated by hydrogel adsorption, quantified using a linear finite element model that yields adsorption coefficients from 0 to 0.1 mol m-3 . Parameters derived herein will aid the design of living materials for pathogen remediation, computation, and self-organizing biofilms.


Assuntos
Escherichia coli , Percepção de Quorum , Escherichia coli/genética , Hidrogéis , Porosidade , Transdução de Sinais
11.
Biointerphases ; 17(2): 021001, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272464

RESUMO

Biofouling creates significant human and economic losses through infections, corrosion, and drag losses on ships and in oil and food distribution pipelines. Organisms adhered to these surfaces contend with high shear rates and are actively transported to the surface. The metallic surfaces to which these organisms are adhered also conduct charge at various potentials, and the effects of surface charge on adhesion rates are little addressed in the literature. We demonstrate that mass-transport limiting current, chronoamperometry, and cyclic voltammetry can be combined to provide resulting adhesion rates similar to those in the literature. Furthermore, we demonstrate that rotating disk electrodes can be used to study adhesion of bacteria to electrically polarized metallic surfaces under shear. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1µm silica microspheres over a range of shear stress from 0.15 to 37 dyncm-2 or shear rates of 14.7-3730 s-1. Unlike quartz-crystal microbalance, our methodology measures changes in the area instead of mass, simultaneously providing measurements of the protein binding. Our deposition rates agree with those found using optical systems. However, unlike optical systems, our methods apply to a wider range of materials than on-chip flow devices.


Assuntos
Aderência Bacteriana , Incrustação Biológica , Eletricidade , Escherichia coli , Humanos , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
12.
ISME J ; 16(4): 1036-1045, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34789844

RESUMO

Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.


Assuntos
Diatomáceas , Microbiota , Bactérias/metabolismo , Nutrientes , Porosidade
13.
Nat Rev Mater ; 6(9): 760-761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394959

RESUMO

The experiences of Black scientists and engineers reveal that science is not a meritocracy. Here is a list of recommendations to combat anti-Black racism in academic institutions.

14.
Exp Mol Pathol ; 110: 104260, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31082388

RESUMO

Although the treatment of metastatic melanoma has been significantly improved by both anti-BRAF/MEK and checkpoint immunotherapies, resistance to these treatment modalities remains a substantial clinical problem. Multiple clinical studies are addressing the optimal sequencing of these agents in larger patient cohorts, but successful long-term individualized treatment will likely require the elucidation of resistance mechanisms from post-progression samples. Here, we describe a patient with BRAF-V600E-positive metastatic melanoma who was sequentially treated with BRAF/MEK inhibitors (dabrafenib/trametinib) and checkpoint inhibitor immunotherapy (nivolumab, followed by pembrolizumab). After the emergence of resistance, whole exome sequencing was performed, implicating MAP2K2 and B2M mutations in loss of response to anti-BRAF/MEK and anti-PD1 therapies, respectively.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Microglobulina beta-2/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/administração & dosagem , Humanos , Imidazóis/administração & dosagem , MAP Quinase Quinase 2/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Mutação , Nivolumabe/administração & dosagem , Oximas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Neoplasias Cutâneas/genética , Falha de Tratamento , Microglobulina beta-2/genética
15.
Sci Adv ; 5(1): eaat5664, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746438

RESUMO

Electrons can be transported from microbes to external insoluble electron acceptors (e.g., metal oxides or electrodes in an electrochemical cell). This process is known as extracellular electron transfer (EET) and has received considerable attention due to its applications in environmental remediation and energy conversion. However, the paucity of rapid and noninvasive phenotyping techniques hinders a detailed understanding of microbial EET mechanisms. Most EET phenotyping techniques assess microorganisms based on their metabolism and growth in various conditions and/or performance in electrochemical systems, which requires large sample volumes and cumbersome experimentation. Here, we use microfluidic dielectrophoresis to show a strong correlation between bacterial EET and surface polarizability. We analyzed surface polarizabilities for wild-type strains and cytochrome-deletion mutants of two model EET microbes, Geobacter sulfurreducens and Shewanella oneidensis, and for Escherichia coli strains heterologously expressing S. oneidensis EET pathways in various growth conditions. Dielectrophoretic phenotyping is achieved with small cell culture volumes (~100 µl) in a short amount of time (1 to 2 min per strain). Our work demonstrates that cell polarizability is diminished in response to deletions of crucial outer-membrane cytochromes and enhanced due to additions of EET pathways. Results of this work hold exciting promise for rapid screening of direct EET or other cell envelope phenotypes using cell polarizability as a proxy, especially for microbes difficult to cultivate in laboratory conditions.


Assuntos
Polaridade Celular/fisiologia , Transporte de Elétrons/fisiologia , Eletroforese/métodos , Microfluídica/métodos , Membrana Nuclear/metabolismo , Membrana Celular/metabolismo , Citocromos/metabolismo , Elétrons , Escherichia coli/metabolismo , Geobacter/química , Potenciais da Membrana/fisiologia , Shewanella/química
16.
Sci Rep ; 9(1): 2602, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796283

RESUMO

Electroactive bacteria such as Geobacter sulfurreducens and Shewanella onedensis produce electrical current during their respiration; this has been exploited in bioelectrochemical systems. These bacteria form thicker biofilms and stay more active than soluble-respiring bacteria biofilms because their electron acceptor is always accessible. In bioelectrochemical systems such as microbial fuel cells, corrosion-resistant metals uptake current from the bacteria, producing power. While beneficial for engineering applications, collecting current using corrosion resistant metals induces pH stress in the biofilm, unlike the naturally occurring process where a reduced metal combines with protons released during respiration. To reduce pH stress, some bioelectrochemical systems use forced convection to enhance mass transport of both nutrients and byproducts; however, biofilms' small pore size limits convective transport, thus, reducing pH stress in these systems remains a challenge. Understanding how convection is necessary but not sufficient for maintaining biofilm health requires decoupling mass transport from momentum transport (i.e. fluidic shear stress). In this study we use a rotating disc electrode to emulate a practical bioelectrochemical system, while decoupling mass transport from shear stress. This is the first study to isolate the metabolic and structural changes in electroactive biofilms due to shear stress. We find that increased shear stress reduces biofilm development time while increasing its metabolic rate. Furthermore, we find biofilm health is negatively affected by higher metabolic rates over long-term growth due to the biofilm's memory of the fluid flow conditions during the initial biofilm development phases. These results not only provide guidelines for improving performance of bioelectrochemical systems, but also reveal features of biofilm behavior. Results of this study suggest that optimized reactors may initiate operation at high shear to decrease development time before decreasing shear for steady-state operation. Furthermore, this biofilm memory discovered will help explain the presence of channels within biofilms observed in other studies.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Fenômenos Biológicos , Concentração de Íons de Hidrogênio , Estresse Mecânico
17.
JCI Insight ; 4(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30626743

RESUMO

Mucus produced by submucosal glands is a key component of respiratory mucociliary transport (MCT). When it emerges from submucosal gland ducts, mucus forms long strands on the airway surface. However, the function of those strands is uncertain. To test the hypothesis that mucus strands facilitate transport of large particles, we studied newborn pigs. In ex vivo experiments, interconnected mucus strands moved over the airway surface, attached to immobile spheres, and initiated their movement by pulling them. Stimulating submucosal gland secretion with methacholine increased the percentage of spheres that moved and shortened the delay until mucus strands began moving spheres. To disrupt mucus strands, we applied reducing agents tris-(2-carboxyethyl)phosphine and dithiothreitol. They decreased the fraction of moving spheres and delayed initiation of movement for spheres that did move. We obtained similar in vivo results with CT-based tracking of microdisks in spontaneously breathing pigs. Methacholine increased the percentage of microdisks moving and reduced the delay until they were propelled up airways. Aerosolized tris-(2-carboxyethyl)phosphine prevented those effects. Once particles started moving, reducing agents did not alter their speed either ex vivo or in vivo. These findings indicate that submucosal glands produce mucus in the form of strands and that the strands initiate movement of large particles, facilitating their removal from airways.

20.
Bioelectrochemistry ; 123: 261-272, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29146422

RESUMO

We present a numerical model of electroporation in a gram-positive bacterium, which accounts for the presence of a negatively charged soft polyelectrolyte layer (which may include a periplasmic space, peptidoglycan layer, cilia, flagella, and other surface appendages) surrounding its plasma membrane. We model the ion transport within and outside the soft layer using the soft layer electrokinetics-based Poisson-Nernst-Planck formalism. Additionally, we model the electroporation dynamics on the plasma membrane using the pore nucleation-based electroporation formalism developed by Krassowska and Filev. We find that ion transport within the soft layer (surface conduction), which depends on the relative importance of the soft layer charged group concentration compared to the buffer concentration, significantly alters the transmembrane voltage across the plasma membrane and hence the pore characteristics. Our numerical simulations suggest that surface conduction significantly lowers the pore number in the plasma membrane. This observation is consistent with experimental studies that show that gram-positive bacteria, in general, have lower transformation efficiencies compared to gram-negative bacteria. Our studies highlight a strong dependence of bacterial electroporation on cell envelope properties and buffer conditions, which need to be taken into consideration when designing electroporation protocols.


Assuntos
Eletroporação/métodos , Bactérias Gram-Positivas/citologia , Algoritmos , Condutividade Elétrica , Eletricidade , Eletrólitos/metabolismo , Análise de Elementos Finitos , Bactérias Gram-Positivas/metabolismo , Transporte de Íons , Modelos Biológicos , Sais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...